DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes.

نویسندگان

  • Satomi Kuramochi-Miyagawa
  • Toshiaki Watanabe
  • Kengo Gotoh
  • Yasushi Totoki
  • Atsushi Toyoda
  • Masahito Ikawa
  • Noriko Asada
  • Kanako Kojima
  • Yuka Yamaguchi
  • Takashi W Ijiri
  • Kenichiro Hata
  • En Li
  • Yoichi Matsuda
  • Tohru Kimura
  • Masaru Okabe
  • Yoshiyuki Sakaki
  • Hiroyuki Sasaki
  • Toru Nakano
چکیده

Silencing of transposable elements occurs during fetal gametogenesis in males via de novo DNA methylation of their regulatory regions. The loss of MILI (miwi-like) and MIWI2 (mouse piwi 2), two mouse homologs of Drosophila Piwi, activates retrotransposon gene expression by impairing DNA methylation in the regulatory regions of the retrotransposons. However, as it is unclear whether the defective DNA methylation in the mutants is due to the impairment of de novo DNA methylation, we analyze DNA methylation and Piwi-interacting small RNA (piRNA) expression in wild-type, MILI-null, and MIWI2-null male fetal germ cells. We reveal that defective DNA methylation of the regulatory regions of the Line-1 (long interspersed nuclear elements) and IAP (intracisternal A particle) retrotransposons in the MILI-null and MIWI2-null male germ cells takes place at the level of de novo methylation. Comprehensive analysis shows that the piRNAs of fetal germ cells are distinct from those previously identified in neonatal and adult germ cells. The expression of piRNAs is reduced under MILI- and MIWI2-null conditions in fetal germ cells, although the extent of the reduction differs significantly between the two mutants. Our data strongly suggest that MILI and MIWI2 play essential roles in establishing de novo DNA methylation of retrotransposons in fetal male germ cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MIWI2 and MILI Have Differential Effects on piRNA Biogenesis and DNA Methylation

In developing male germ cells, prospermatogonia, two Piwi proteins, MILI and MIWI2, use Piwi-interacting RNA (piRNA) guides to repress transposable element (TE) expression and ensure genome stability and proper gametogenesis. In addition to their roles in post-transcriptional TE repression, both proteins are required for DNA methylation of TE sequences. Here, we analyzed the effect of Miwi2 def...

متن کامل

Retrotransposon Silencing by piRNAs: Ping-Pong Players Mark Their Sub-Cellular Boundaries

Germ cells of many animals exhibit characteristic cytoplasmic structures— termed germ granules or nuage—which are ribonucleoprotein (RNP) amorphous aggregates without limiting membranes and are often closely associated with nuclei or mitochondria [1]. In several model animals, such as Drosophila, Caenorhabditis elegans, and Xenopus, studies on germ granules have mainly focused on their asymmetr...

متن کامل

A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice.

piRNAs and Piwi proteins have been implicated in transposon control and are linked to transposon methylation in mammals. Here we examined the construction of the piRNA system in the restricted developmental window in which methylation patterns are set during mammalian embryogenesis. We find robust expression of two Piwi family proteins, MIWI2 and MILI. Their associated piRNA profiles reveal dif...

متن کامل

Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members.

In germ cells, Piwi proteins interact with a specific class of small noncoding RNAs, piwi-interacting RNAs (piRNAs). Together, these form a pathway that represses transposable elements, thus safeguarding germ cell genomes. Basic models describe the overall operation of piRNA pathways. However, the protein compositions of Piwi complexes, the critical protein-protein interactions that drive small...

متن کامل

Induction of DNA Methylation by Artificial piRNA Production in Male Germ Cells

Global DNA demethylation and subsequent de novo DNA methylation take place in mammalian male embryonic germ cells [1-3]. P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs), which are germline-specific small RNAs, have been postulated to be critically important for de novo DNA methylation of retrotransposon genes, and many proteins, including PIWI family proteins, play pivotal roles...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes & development

دوره 22 7  شماره 

صفحات  -

تاریخ انتشار 2008